Oxygen Reduction Reaction on Classically Immiscible Bimetallics: A Case Study of RhAu
نویسندگان
چکیده
The catalytic properties of bulk-immiscible alloys are less explored than their bulk-miscible counterparts due to inherent difficulties in their synthesis and stabilization. The development of alternative synthetic methods can, however, provide routes toward bulkimmiscible nanoparticles with metastable randomly alloyed structures. In this study, we combine computational screening and a microwave-based synthesis method to target bulkimmiscible alloys that show enhanced reactivity over pure metals for the oxygen reduction reaction (ORR). A number of systems are identified theoretically as promising ORR catalysts. The theoretical predictions are experimentally verified for the RhAu system, for which a specific surface ensemble is identified as being highly active in the ORR.
منابع مشابه
Microwave synthesis of classically immiscible rhodium-silver and rhodium-gold alloy nanoparticles: highly active hydrogenation catalysts.
Noble metal alloys are important in large-scale catalytic processes. Alloying facilitates fine-tuning of catalytic properties via synergistic interactions between metals. It also allows for dilution of scarce and expensive metals using comparatively earth-abundant metals. RhAg and RhAu are classically considered to be immiscible metals. We show here that stable RhM (M = Ag, Au) nanoparticles wi...
متن کاملElectrodeposition of platinum nanoparticles on reduced graphene oxide as an efficient catalyst for oxygen reduction reaction
Reduced graphene oxide film was synthesized on a glassy carbon electrode by electro reduction of graphene oxide powders in aqueous solution. Then platinum nano particles were deposited on reduced graphene oxide film that was deposited on the glassy carbon electrode via electro reduction of platinum salt. The Physical morphology of the platinum on reduced graphene oxide film was evaluated by sca...
متن کاملMetal Oxide/Pt Based Nanocomposites as Electrocatalysts for Oxygen Reduction Reaction
Fuel cell is a promising choice for clean energy because of its eco-friendly system, high energy conversion efficiency and high power density. Recently, much of the research work is focused on the system of combining metal oxides to increase the durability and surface area and to reduce the cost. In this study, among the various fabrication methods, we used the precipitation method to synthesis...
متن کاملOxygen reduction reaction on Pt/C at the presence of super paramagnetic of Fe3O4 nanoparticles for PEMFCs
In this paper the role of super paramagnetic iron oxide nanoparticles (SPI) on Platinum nanoclusters on activated carbon (Pt/C) for electrocatalytic oxygen reduction reaction was considered. Four composites of Pt/C and super paramagnetic iron oxide nanoparticles were prepared with the same total composites weight and different loading of Pt/C (1.2, 0.6, 0.4 and 0.3 mg ). The composite attached ...
متن کاملSynthesized Bimetallic Electrocatalyst for Oxygen Reduction Reaction in Polymer Electrolyte Fuel Cells
In the present study, a step by step process was applied to synthesize bimetallic electrocatalyst (Ru and Pt on VulcanXC-72R). This process can reduce the amount of platinum and increase the gas diffusion electrode (GDE) performance in the cathodic reaction of polymer electrolyte membrane fuel cells (PEMFCs). Using the impregnation by hydrothermal synthesis method, a series of electrocatalysts ...
متن کامل